Introduction
Samplesheet input
You will need to create a samplesheet with information about the samples you would like to analyse before running the pipeline. Use this parameter to specify its location. It has to be a comma-separated file with 3 columns, and a header row as shown in the examples below.
Multiple runs of the same sample
The sample
identifiers have to be the same when you have re-sequenced the same sample more than once e.g. to increase sequencing depth. The pipeline will concatenate the raw reads before performing any downstream analysis. Below is an example for the same sample sequenced across 3 lanes:
Full samplesheet
The pipeline will auto-detect whether a sample is single- or paired-end using the information provided in the samplesheet. The samplesheet can have as many columns as you desire, however, there is a strict requirement for the first 3 columns to match those defined in the table below.
This pipeline is suitable for paired-end reads only. A final samplesheet file may look something like the one below. This is for 6 samples, where TREATMENT_REP3
has been sequenced twice.
Column | Description |
---|---|
sample | Custom sample name. This entry will be identical for multiple sequencing libraries/runs from the same sample. Spaces in sample names are automatically converted to underscores (_ ). |
fastq_1 | Full path to FastQ file for Illumina short reads 1. File has to be gzipped and have the extension “.fastq.gz” or “.fq.gz”. |
fastq_2 | Full path to FastQ file for Illumina short reads 2. File has to be gzipped and have the extension “.fastq.gz” or “.fq.gz”. |
An example samplesheet has been provided with the pipeline.
Quality Control options
By default, this pipeline checks the quality of the raw reads using FastQC, then performs trimming with fastp. Quality of the trimmed reads is checked again with
FastQC. You can provide extra arguments to fastp using the --extra_fastp_args
parameter. You can provide fasta files of adapter sequences to be used for trimming with the --adapter_fasta
parameter.
Alternatively, you can skip these steps with --skip_qc
and --skip_fastp
parameters.
There is also an optional step to remove rRNA reads using SortMeRNA after trimming using the --remove_ribo_rna
parameter. You can provide a custom ribosomal RNA database with the --ribo_database_manifest
parameter. By default, the pipeline uses the databases mentioned in assets/rrna-db-defaults.txt
. You can also save the non-ribo reads with the --save_non_ribo_reads
parameter. If
rRNA removal is performed, then FastQC is run again on the non-ribo reads.
Assembly and redundancy reduction options
The --assemblers
parameter can be used to specify which assemblers to use. By default, the pipeline uses Trinity and rnaSPAdes (--assemblers "trinity,rnaspades"
).
The third assembler option you can add is "trinity_no_norm"
for running Trinity without normalised reads. Extra parameters can be provided to Trinity using the extra_trinity_args
parameter.
For rnaSPAdes, the following additional params can be used:
--soft_filtered_transcripts
(to include soft filtered transcripts from rnaSPAdes as inputs to Evidential Gene)--hard_filtered_transcripts
(to include hard filtered transcripts from rnaSPAdes as inputs to Evidential Gene)--ss
param can be used to set the strand-specific type for rnaSPAdes.
All assemblies are concatenated into one and redundancy is reduced using
Evidential Gene’s tr2aacds tool. You can provide additional parameters to tr2aacds
using the extra_tr2aacds_args
parameter.
Assembly quality assessment
The pipeline runs BUSCO on the final assembly to assess the quality of the assembly. You can provide the lineage to use with the --busco_lineage
parameter. Other parameters available for BUSCO include busco_lineages_path
and busco_config
.
rnaQUAST is also run on the final assembly. Optional parameters for rnaQUAST include fasta
for a fasta file of a reference genome and gtf
for a GTF/GFF file of gene coordinates.
TransRate can be used for assembly quality assessment if the profile is not set to conda
or mamba
. It provides contig metrics as well as read mapping metrics. Optionally, the transrate_reference
parameter can be used to provide a FASTA file of reference proteins or transcripts from a related species.
Quantification options
You can provide the path to the transcriptome assembly fasta file with the --transcript_fasta
parameter if you are running the pipeline in --skip_assembly
mode. The --skip_assembly
mode performs QC and quantification, but does not create a transcriptome assembly. The pipeline uses Salmon to quantify the expression of the reads. By default the library type is set to A
, but you can change this with the --lib_type
parameter.
Running the pipeline
The typical command for running the pipeline is as follows:
This will launch the pipeline with the docker
configuration profile. See below for more information about profiles.
Note that the pipeline will create the following files in your working directory:
If you wish to repeatedly use the same parameters for multiple runs, rather than specifying each flag in the command, you can specify these in a params file.
Pipeline settings can be provided in a yaml
or json
file via -params-file <file>
.
Do not use -c <file>
to specify parameters as this will result in errors. Custom config files specified with -c
must only be used for tuning process resource specifications, other infrastructural tweaks (such as output directories), or module arguments (args).
The above pipeline run specified with a params file in yaml format:
with:
You can also generate such YAML
/JSON
files via nf-core/launch.
Updating the pipeline
When you run the above command, Nextflow automatically pulls the pipeline code from GitHub and stores it as a cached version. When running the pipeline after this, it will always use the cached version if available - even if the pipeline has been updated since. To make sure that you’re running the latest version of the pipeline, make sure that you regularly update the cached version of the pipeline:
Reproducibility
It is a good idea to specify a pipeline version when running the pipeline on your data. This ensures that a specific version of the pipeline code and software are used when you run your pipeline. If you keep using the same tag, you’ll be running the same version of the pipeline, even if there have been changes to the code since.
First, go to the nf-core/denovotranscript releases page and find the latest pipeline version - numeric only (eg. 1.3.1
). Then specify this when running the pipeline with -r
(one hyphen) - eg. -r 1.3.1
. Of course, you can switch to another version by changing the number after the -r
flag.
This version number will be logged in reports when you run the pipeline, so that you’ll know what you used when you look back in the future. For example, at the bottom of the MultiQC reports.
To further assist in reproducbility, you can use share and re-use parameter files to repeat pipeline runs with the same settings without having to write out a command with every single parameter.
If you wish to share such profile (such as upload as supplementary material for academic publications), make sure to NOT include cluster specific paths to files, nor institutional specific profiles.
Core Nextflow arguments
These options are part of Nextflow and use a single hyphen (pipeline parameters use a double-hyphen).
-profile
Use this parameter to choose a configuration profile. Profiles can give configuration presets for different compute environments.
Several generic profiles are bundled with the pipeline which instruct the pipeline to use software packaged using different methods (Docker, Singularity, Podman, Shifter, Charliecloud, Apptainer, Conda) - see below.
We highly recommend the use of Docker or Singularity containers for full pipeline reproducibility, however when this is not possible, Conda is partially supported. Note that Conda is not supported for Transrate in this pipeline.
The pipeline also dynamically loads configurations from https://github.com/nf-core/configs when it runs, making multiple config profiles for various institutional clusters available at run time. For more information and to see if your system is available in these configs please see the nf-core/configs documentation.
Note that multiple profiles can be loaded, for example: -profile test,docker
- the order of arguments is important!
They are loaded in sequence, so later profiles can overwrite earlier profiles.
If -profile
is not specified, the pipeline will run locally and expect all software to be installed and available on the PATH
. This is not recommended, since it can lead to different results on different machines dependent on the computer enviroment.
test
- A profile with a complete configuration for automated testing
- Includes links to test data so needs no other parameters
docker
- A generic configuration profile to be used with Docker
singularity
- A generic configuration profile to be used with Singularity
podman
- A generic configuration profile to be used with Podman
shifter
- A generic configuration profile to be used with Shifter
charliecloud
- A generic configuration profile to be used with Charliecloud
apptainer
- A generic configuration profile to be used with Apptainer
wave
- A generic configuration profile to enable Wave containers. Use together with one of the above (requires Nextflow
24.03.0-edge
or later).
- A generic configuration profile to enable Wave containers. Use together with one of the above (requires Nextflow
conda
- A generic configuration profile to be used with Conda. Please only use Conda as a last resort i.e. when it’s not possible to run the pipeline with Docker, Singularity, Podman, Shifter, Charliecloud, or Apptainer.
-resume
Specify this when restarting a pipeline. Nextflow will use cached results from any pipeline steps where the inputs are the same, continuing from where it got to previously. For input to be considered the same, not only the names must be identical but the files’ contents as well. For more info about this parameter, see this blog post.
You can also supply a run name to resume a specific run: -resume [run-name]
. Use the nextflow log
command to show previous run names.
-c
Specify the path to a specific config file (this is a core Nextflow command). See the nf-core website documentation for more information.
Custom configuration
Resource requests
Whilst the default requirements set within the pipeline will hopefully work for most people and with most input data, you may find that you want to customise the compute resources that the pipeline requests. Each step in the pipeline has a default set of requirements for number of CPUs, memory and time. For most of the steps in the pipeline, if the job exits with any of the error codes specified here it will automatically be resubmitted with higher requests (2 x original, then 3 x original). If it still fails after the third attempt then the pipeline execution is stopped.
To change the resource requests, please see the max resources and tuning workflow resources section of the nf-core website.
Custom Containers
In some cases you may wish to change which container or conda environment a step of the pipeline uses for a particular tool. By default nf-core pipelines use containers and software from the biocontainers or bioconda projects. However in some cases the pipeline specified version maybe out of date.
To use a different container from the default container or conda environment specified in a pipeline, please see the updating tool versions section of the nf-core website.
Custom Tool Arguments
A pipeline might not always support every possible argument or option of a particular tool used in pipeline. Fortunately, nf-core pipelines provide some freedom to users to insert additional parameters that the pipeline does not include by default.
To learn how to provide additional arguments to a particular tool of the pipeline, please see the customising tool arguments section of the nf-core website.
nf-core/configs
In most cases, you will only need to create a custom config as a one-off but if you and others within your organisation are likely to be running nf-core pipelines regularly and need to use the same settings regularly it may be a good idea to request that your custom config file is uploaded to the nf-core/configs
git repository. Before you do this please can you test that the config file works with your pipeline of choice using the -c
parameter. You can then create a pull request to the nf-core/configs
repository with the addition of your config file, associated documentation file (see examples in nf-core/configs/docs
), and amending nfcore_custom.config
to include your custom profile.
See the main Nextflow documentation for more information about creating your own configuration files.
If you have any questions or issues please send us a message on Slack on the #configs
channel.
Running in the background
Nextflow handles job submissions and supervises the running jobs. The Nextflow process must run until the pipeline is finished.
The Nextflow -bg
flag launches Nextflow in the background, detached from your terminal so that the workflow does not stop if you log out of your session. The logs are saved to a file.
Alternatively, you can use screen
/ tmux
or similar tool to create a detached session which you can log back into at a later time.
Some HPC setups also allow you to run nextflow within a cluster job submitted your job scheduler (from where it submits more jobs).
Nextflow memory requirements
In some cases, the Nextflow Java virtual machines can start to request a large amount of memory.
We recommend adding the following line to your environment to limit this (typically in ~/.bashrc
or ~./bash_profile
):