nf-core/proteinfold
Protein 3D structure prediction pipeline
Introduction
Samplesheet input
You will need to create a samplesheet with information about the sequences you would like to analyse before running the pipeline. Use this parameter to specify its location. It has to be a comma-separated file with 2 columns, and a header row as shown in the examples below.
Full samplesheet
A sample of the final samplesheet file for two sequences is shown below:
The samplesheet can have as many columns as you desire, however, there is a strict requirement for the first 2 columns to match those defined in the table below:
Column | Description |
---|---|
id | Custom sequence name. Spaces in sequence names are automatically converted to underscores (_ ). |
fasta | Full path to fasta file for the provided sequence. File has to have the extension “.fasta” or “fa”. |
An example samplesheet has been provided with the pipeline.
Each FASTA file should contain a single protein sequence unless using multimer mode. To provide a FASTA file with multiple sequences for individual folding, you can use one or more FASTA files with the --split_fasta
parameter. This will treat each sequence in the FASTA file as a separate entry, folding them individually and in parallel, as if each sequence were listed separately in the samplesheet.
Running the pipeline
The typical commands for running the pipeline on AlphaFold2, Colabfold and ESMFold modes are shown below.
You can run any combination of the models by providing them to the
--mode
parameter separated by a comma. For example:--mode alphafold2,esmfold,colabfold
will run the three models in parallel.
AlphaFold2 regular can be run using this command:
To run the AlphaFold2 that splits the MSA calculation from the model inference, you can use the --alphafold2_mode split_msa_prediction
parameter, as shown below:
To provide the predownloaded AlphaFold2 databases and parameters you can specify the --alphafold2_db <PATH>
parameter and the directory structure of your path should be like this:
Directory structure
```console ├── alphafold_params_2022-12-06 │ ├── LICENSE │ ├── params_model_1_multimer.npz │ ├── params_model_1_multimer_v2.npz │ ├── params_model_1_multimer_v3.npz │ ├── params_model_1.npz │ ├── params_model_1_ptm.npz │ ├── params_model_2_multimer.npz │ ├── params_model_2_multimer_v2.npz │ ├── params_model_2_multimer_v3.npz │ ├── params_model_2.npz │ ├── params_model_2_ptm.npz │ ├── params_model_3_multimer.npz │ ├── params_model_3_multimer_v2.npz │ ├── params_model_3_multimer_v3.npz │ ├── params_model_3.npz │ ├── params_model_3_ptm.npz │ ├── params_model_4_multimer.npz │ ├── params_model_4_multimer_v2.npz │ ├── params_model_4_multimer_v3.npz │ ├── params_model_4.npz │ ├── params_model_4_ptm.npz │ ├── params_model_5_multimer.npz │ ├── params_model_5_multimer_v2.npz │ ├── params_model_5_multimer_v3.npz │ ├── params_model_5.npz │ └── params_model_5_ptm.npz ├── mgnify │ └── mgy_clusters_2022_05.fa ├── pdb70 │ └── pdb70_from_mmcif_200916 │ ├── md5sum │ ├── pdb70_a3m.ffdata │ ├── pdb70_a3m.ffindex │ ├── pdb70_clu.tsv │ ├── pdb70_cs219.ffdata │ ├── pdb70_cs219.ffindex │ ├── pdb70_hhm.ffdata │ ├── pdb70_hhm.ffindex │ └── pdb_filter.dat ├── pdb_mmcif │ ├── mmcif_files │ │ ├── 1g6g.cif │ │ ├── 1go4.cif │ │ ├── 1isn.cif │ │ ├── 1kuu.cif │ │ ├── 1m7s.cif │ │ ├── 1mwq.cif │ │ ├── 1ni5.cif │ │ ├── 1qgd.cif │ │ ├── 1tp9.cif │ │ ├── 1wa9.cif │ │ ├── 1ye5.cif │ │ ├── 1yhl.cif │ │ ├── 2bjd.cif │ │ ├── 2bo9.cif │ │ ├── 2e7t.cif │ │ ├── 2fyg.cif │ │ ├── 2j0q.cif │ │ ├── 2jcq.cif │ │ ├── 2m4k.cif │ │ ├── 2n9o.cif │ │ ├── 2nsx.cif │ │ ├── 2w4u.cif │ │ ├── 2wd6.cif │ │ ├── 2wh5.cif │ │ ├── 2wji.cif │ │ ├── 2yu3.cif │ │ ├── 3cw2.cif │ │ ├── 3d45.cif │ │ ├── 3gnz.cif │ │ ├── 3j0a.cif │ │ ├── 3jaj.cif │ │ ├── 3mzo.cif │ │ ├── 3nrn.cif │ │ ├── 3piv.cif │ │ ├── 3pof.cif │ │ ├── 3pvd.cif │ │ ├── 3q45.cif │ │ ├── 3qh6.cif │ │ ├── 3rg2.cif │ │ ├── 3sxe.cif │ │ ├── 3uai.cif │ │ ├── 3uid.cif │ │ ├── 3wae.cif │ │ ├── 3wt1.cif │ │ ├── 3wtr.cif │ │ ├── 3wy2.cif │ │ ├── 3zud.cif │ │ ├── 4bix.cif │ │ ├── 4bzx.cif │ │ ├── 4c1n.cif │ │ ├── 4cej.cif │ │ ├── 4chm.cif │ │ ├── 4fzo.cif │ │ ├── 4i1f.cif │ │ ├── 4ioa.cif │ │ ├── 4j6o.cif │ │ ├── 4m9q.cif │ │ ├── 4mal.cif │ │ ├── 4nhe.cif │ │ ├── 4o2w.cif │ │ ├── 4pzo.cif │ │ ├── 4qlx.cif │ │ ├── 4uex.cif │ │ ├── 4zm4.cif │ │ ├── 4zv1.cif │ │ ├── 5aj4.cif │ │ ├── 5frs.cif │ │ ├── 5hwo.cif │ │ ├── 5kbk.cif │ │ ├── 5odq.cif │ │ ├── 5u5t.cif │ │ ├── 5wzq.cif │ │ ├── 5x9z.cif │ │ ├── 5xe5.cif │ │ ├── 5ynv.cif │ │ ├── 5yud.cif │ │ ├── 5z5c.cif │ │ ├── 5zb3.cif │ │ ├── 5zlg.cif │ │ ├── 6a6i.cif │ │ ├── 6az3.cif │ │ ├── 6ban.cif │ │ ├── 6g1f.cif │ │ ├── 6ix4.cif │ │ ├── 6jwp.cif │ │ ├── 6ng9.cif │ │ ├── 6ojj.cif │ │ ├── 6s0x.cif │ │ ├── 6sg9.cif │ │ ├── 6vi4.cif │ │ └── 7sp5.cif │ └── obsolete.dat ├── pdb_seqres │ └── pdb_seqres.txt ├── small_bfd │ └── bfd-first_non_consensus_sequences.fasta ├── uniprot │ └── uniprot.fasta ├── uniref30 │ ├── UniRef30_2021_03_a3m.ffdata │ ├── UniRef30_2021_03_a3m.ffindex │ ├── UniRef30_2021_03_cs219.ffdata │ ├── UniRef30_2021_03_cs219.ffindex | ├── UniRef30_2021_03_hhm.ffdata │ └── UniRef30_2021_03_hhm.ffindex └── uniref90 └── uniref90.fasta ```Colabfold mode using use your own custom MMSeqs2 API server (--colabfold_server local
) can be run using the following command:
The command to run run Colabfold, using the Colabfold webserver is shown below:
If you specify the --colabfold_db <PATH>
parameter, the directory structure of your path should be like this:
Directory structure
```console ├── colabfold_envdb_202108 │ ├── colabfold_envdb_202108_db.0 │ ├── colabfold_envdb_202108_db.1 │ ├── colabfold_envdb_202108_db.10 │ ├── colabfold_envdb_202108_db.11 │ ├── colabfold_envdb_202108_db.12 │ ├── colabfold_envdb_202108_db.13 │ ├── colabfold_envdb_202108_db.14 │ ├── colabfold_envdb_202108_db.15 │ ├── colabfold_envdb_202108_db.2 │ ├── colabfold_envdb_202108_db.3 │ ├── colabfold_envdb_202108_db.4 │ ├── colabfold_envdb_202108_db.5 │ ├── colabfold_envdb_202108_db.6 │ ├── colabfold_envdb_202108_db.7 │ ├── colabfold_envdb_202108_db.8 │ ├── colabfold_envdb_202108_db.9 │ ├── colabfold_envdb_202108_db_aln.0 │ ├── colabfold_envdb_202108_db_aln.1 │ ├── colabfold_envdb_202108_db_aln.10 │ ├── colabfold_envdb_202108_db_aln.11 │ ├── colabfold_envdb_202108_db_aln.12 │ ├── colabfold_envdb_202108_db_aln.13 │ ├── colabfold_envdb_202108_db_aln.14 │ ├── colabfold_envdb_202108_db_aln.15 │ ├── colabfold_envdb_202108_db_aln.2 │ ├── colabfold_envdb_202108_db_aln.3 │ ├── colabfold_envdb_202108_db_aln.4 │ ├── colabfold_envdb_202108_db_aln.5 │ ├── colabfold_envdb_202108_db_aln.6 │ ├── colabfold_envdb_202108_db_aln.7 │ ├── colabfold_envdb_202108_db_aln.8 │ ├── colabfold_envdb_202108_db_aln.9 │ ├── colabfold_envdb_202108_db_aln.dbtype │ ├── colabfold_envdb_202108_db_aln.index │ ├── colabfold_envdb_202108_db.dbtype │ ├── colabfold_envdb_202108_db_h │ ├── colabfold_envdb_202108_db_h.dbtype │ ├── colabfold_envdb_202108_db_h.index │ ├── colabfold_envdb_202108_db.idx │ ├── colabfold_envdb_202108_db.idx.dbtype │ ├── colabfold_envdb_202108_db.idx.index │ ├── colabfold_envdb_202108_db.index │ ├── colabfold_envdb_202108_db_seq.0 │ ├── colabfold_envdb_202108_db_seq.1 │ ├── colabfold_envdb_202108_db_seq.10 │ ├── colabfold_envdb_202108_db_seq.11 │ ├── colabfold_envdb_202108_db_seq.12 │ ├── colabfold_envdb_202108_db_seq.13 │ ├── colabfold_envdb_202108_db_seq.14 │ ├── colabfold_envdb_202108_db_seq.15 │ ├── colabfold_envdb_202108_db_seq.2 │ ├── colabfold_envdb_202108_db_seq.3 │ ├── colabfold_envdb_202108_db_seq.4 │ ├── colabfold_envdb_202108_db_seq.5 │ ├── colabfold_envdb_202108_db_seq.6 │ ├── colabfold_envdb_202108_db_seq.7 │ ├── colabfold_envdb_202108_db_seq.8 │ ├── colabfold_envdb_202108_db_seq.9 │ ├── colabfold_envdb_202108_db_seq.dbtype │ ├── colabfold_envdb_202108_db_seq_h -> colabfold_envdb_202108_db_h │ ├── colabfold_envdb_202108_db_seq_h.dbtype -> colabfold_envdb_202108_db_h.dbtype │ ├── colabfold_envdb_202108_db_seq_h.index -> colabfold_envdb_202108_db_h.index │ ├── colabfold_envdb_202108_db_seq.index ├── params │ ├── alphafold_params_2021-07-14 │ │ ├── LICENSE │ │ ├── params_model_1.npz │ │ ├── params_model_1_ptm.npz │ │ ├── params_model_2.npz │ │ ├── params_model_2_ptm.npz │ │ ├── params_model_3.npz │ │ ├── params_model_3_ptm.npz │ │ ├── params_model_4.npz │ │ ├── params_model_4_ptm.npz │ │ ├── params_model_5.npz │ │ └── params_model_5_ptm.npz │ └── alphafold_params_colab_2022-12-06 │ ├── LICENSE │ ├── params_model_1_multimer_v3.npz │ ├── params_model_1.npz │ ├── params_model_2_multimer_v3.npz │ ├── params_model_2.npz │ ├── params_model_2_ptm.npz │ ├── params_model_3_multimer_v3.npz │ ├── params_model_3.npz │ ├── params_model_4_multimer_v3.npz │ ├── params_model_4.npz │ ├── params_model_5_multimer_v3.npz │ └── params_model_5.npz └── uniref30_2302 ├── uniref30_2302_aln.tsv ├── uniref30_2302_db.0 ├── uniref30_2302_db.1 ├── uniref30_2302_db.2 ├── uniref30_2302_db.3 ├── uniref30_2302_db.4 ├── uniref30_2302_db.5 ├── uniref30_2302_db.6 ├── uniref30_2302_db.7 ├── uniref30_2302_db_aln.0 ├── uniref30_2302_db_aln.1 ├── uniref30_2302_db_aln.2 ├── uniref30_2302_db_aln.3 ... ├── uniref30_2302_db_aln.97 ├── uniref30_2302_db_aln.98 ├── uniref30_2302_db_aln.99 ├── uniref30_2302_db_aln.dbtype ├── uniref30_2302_db_aln.index ├── uniref30_2302_db.dbtype ├── uniref30_2302_db_h ├── uniref30_2302_db_h.dbtype ├── uniref30_2302_db_h.index ├── uniref30_2302_db.idx ├── uniref30_2302_db.idx.dbtype ├── uniref30_2302_db.idx.index ├── uniref30_2302_db.idx_mapping ├── uniref30_2302_db.idx_taxonomy ├── uniref30_2302_db.index ├── uniref30_2302_db_mapping ├── uniref30_2302_db_seq.0 ├── uniref30_2302_db_seq.1 ├── uniref30_2302_db_seq.2 ├── uniref30_2302_db_seq.3 ... ├── uniref30_2302_db_seq.97 ├── uniref30_2302_db_seq.98 ├── uniref30_2302_db_seq.99 ├── uniref30_2302_db_seq.dbtype ├── uniref30_2302_db_seq_h -> uniref30_2302_db_h ├── uniref30_2302_db_seq_h.dbtype -> uniref30_2302_db_h.dbtype ├── uniref30_2302_db_seq_h.index -> uniref30_2302_db_h.index └── uniref30_2302_db_seq.index ```If you specify the --esmfold_db <PATH>
parameter, the directory structure of your path should be like this:
This will launch the pipeline with the docker
configuration profile. See below for more information about profiles.
Note that the pipeline will create the following files in your working directory:
If you wish to repeatedly use the same parameters for multiple runs, rather than specifying each flag in the command, you can specify these in a params file.
Pipeline settings can be provided in a yaml
or json
file via -params-file <file>
.
Do not use -c <file>
to specify parameters as this will result in errors. Custom config files specified with -c
must only be used for tuning process resource specifications, other infrastructural tweaks (such as output directories), or module arguments (args).
The above pipeline run specified with a params file in yaml format:
with:
You can also generate such YAML
/JSON
files via nf-core/launch.
Updating the pipeline
When you run the above command, Nextflow automatically pulls the pipeline code from GitHub and stores it as a cached version. When running the pipeline after this, it will always use the cached version if available - even if the pipeline has been updated since. To make sure that you’re running the latest version of the pipeline, make sure that you regularly update the cached version of the pipeline:
Reproducibility
It is a good idea to specify a pipeline version when running the pipeline on your data. This ensures that a specific version of the pipeline code and software are used when you run your pipeline. If you keep using the same tag, you’ll be running the same version of the pipeline, even if there have been changes to the code since.
First, go to the nf-core/proteinfold releases page and find the latest pipeline version - numeric only (eg. 1.3.1
). Then specify this when running the pipeline with -r
(one hyphen) - eg. -r 1.3.1
. Of course, you can switch to another version by changing the number after the -r
flag.
This version number will be logged in reports when you run the pipeline, so that you’ll know what you used when you look back in the future. For example, at the bottom of the MultiQC reports.
To further assist in reproducbility, you can use share and re-use parameter files to repeat pipeline runs with the same settings without having to write out a command with every single parameter.
If you wish to share such profile (such as upload as supplementary material for academic publications), make sure to NOT include cluster specific paths to files, nor institutional specific profiles.
Core Nextflow arguments
These options are part of Nextflow and use a single hyphen (pipeline parameters use a double-hyphen).
-profile
Use this parameter to choose a configuration profile. Profiles can give configuration presets for different compute environments.
Several generic profiles are bundled with the pipeline which instruct the pipeline to use software packaged using different methods (Docker, Singularity, Podman, Shifter, Charliecloud, Apptainer, Conda) - see below.
We highly recommend the use of Docker or Singularity containers for full pipeline reproducibility, however when this is not possible, Conda is also supported.
The pipeline also dynamically loads configurations from https://github.com/nf-core/configs when it runs, making multiple config profiles for various institutional clusters available at run time. For more information and to see if your system is available in these configs please see the nf-core/configs documentation.
Note that multiple profiles can be loaded, for example: -profile test,docker
- the order of arguments is important!
They are loaded in sequence, so later profiles can overwrite earlier profiles.
If -profile
is not specified, the pipeline will run locally and expect all software to be installed and available on the PATH
. This is not recommended, since it can lead to different results on different machines dependent on the computer enviroment.
test
- A profile with a complete configuration for automated testing
- Includes links to test data so needs no other parameters
docker
- A generic configuration profile to be used with Docker
singularity
- A generic configuration profile to be used with Singularity
podman
- A generic configuration profile to be used with Podman
shifter
- A generic configuration profile to be used with Shifter
charliecloud
- A generic configuration profile to be used with Charliecloud
apptainer
- A generic configuration profile to be used with Apptainer
wave
- A generic configuration profile to enable Wave containers. Use together with one of the above (requires Nextflow
24.03.0-edge
or later).
- A generic configuration profile to enable Wave containers. Use together with one of the above (requires Nextflow
conda
- A generic configuration profile to be used with Conda. Please only use Conda as a last resort i.e. when it’s not possible to run the pipeline with Docker, Singularity, Podman, Shifter, Charliecloud, or Apptainer.
-resume
Specify this when restarting a pipeline. Nextflow will use cached results from any pipeline steps where the inputs are the same, continuing from where it got to previously. For input to be considered the same, not only the names must be identical but the files’ contents as well. For more info about this parameter, see this blog post.
You can also supply a run name to resume a specific run: -resume [run-name]
. Use the nextflow log
command to show previous run names.
-c
Specify the path to a specific config file (this is a core Nextflow command). See the nf-core website documentation for more information.
Custom configuration
Resource requests
Whilst the default requirements set within the pipeline will hopefully work for most people and with most input data, you may find that you want to customise the compute resources that the pipeline requests. Each step in the pipeline has a default set of requirements for number of CPUs, memory and time. For most of the steps in the pipeline, if the job exits with any of the error codes specified here it will automatically be resubmitted with higher requests (2 x original, then 3 x original). If it still fails after the third attempt then the pipeline execution is stopped.
To change the resource requests, please see the max resources and tuning workflow resources section of the nf-core website.
Custom Containers
In some cases you may wish to change which container or conda environment a step of the pipeline uses for a particular tool. By default nf-core pipelines use containers and software from the biocontainers or bioconda projects. However in some cases the pipeline specified version maybe out of date.
To use a different container from the default container or conda environment specified in a pipeline, please see the updating tool versions section of the nf-core website.
Custom Tool Arguments
A pipeline might not always support every possible argument or option of a particular tool used in pipeline. Fortunately, nf-core pipelines provide some freedom to users to insert additional parameters that the pipeline does not include by default.
To learn how to provide additional arguments to a particular tool of the pipeline, please see the customising tool arguments section of the nf-core website.
nf-core/configs
In most cases, you will only need to create a custom config as a one-off but if you and others within your organisation are likely to be running nf-core pipelines regularly and need to use the same settings regularly it may be a good idea to request that your custom config file is uploaded to the nf-core/configs
git repository. Before you do this please can you test that the config file works with your pipeline of choice using the -c
parameter. You can then create a pull request to the nf-core/configs
repository with the addition of your config file, associated documentation file (see examples in nf-core/configs/docs
), and amending nfcore_custom.config
to include your custom profile.
See the main Nextflow documentation for more information about creating your own configuration files.
If you have any questions or issues please send us a message on Slack on the #configs
channel.
Use of shared file systems
Given that the AlphaFold2 and the ColabFold modes (except for the ColabFold webserver option) rely on huge databases to infer the predictions, the execution of the pipeline is recommended to take place on shared file systems so as to avoid high latency caused during staging this data. For instance, if you work on AWS, you might consider using an Amazon FSx file system.
Azure Resource Requests
To be used with the azurebatch
profile by specifying the -profile azurebatch
.
We recommend providing a compute params.vm_type
of Standard_D16_v3
VMs by default but these options can be changed if required.
Note that the choice of VM size depends on your quota and the overall workload during the analysis. For a thorough list, please refer the Azure Sizes for virtual machines in Azure.
Running in the background
Nextflow handles job submissions and supervises the running jobs. The Nextflow process must run until the pipeline is finished.
The Nextflow -bg
flag launches Nextflow in the background, detached from your terminal so that the workflow does not stop if you log out of your session. The logs are saved to a file.
Alternatively, you can use screen
/ tmux
or similar tool to create a detached session which you can log back into at a later time.
Some HPC setups also allow you to run nextflow within a cluster job submitted your job scheduler (from where it submits more jobs).
Nextflow memory requirements
In some cases, the Nextflow Java virtual machines can start to request a large amount of memory.
We recommend adding the following line to your environment to limit this (typically in ~/.bashrc
or ~./bash_profile
):