nf-core/sarek
Analysis pipeline to detect germline or somatic variants (pre-processing, variant calling and annotation) from WGS / targeted sequencing
3.0.2
). The latest
stable release is
3.5.0
.
Introduction
Sarek is a workflow designed to detect germline and somatic variants on whole genome, whole exome, or targeted sequencing data.
Initially designed for human and mouse, it can work on any species if a reference genome is available. Sarek is designed to handle single samples, such as single-normal or single-tumor samples, and tumor-normal pairs including additional relapses.
Running the pipeline
Quickstart
The typical command for running the pipeline is as follows:
This will launch the pipeline with the docker
configuration profile. See below for more information about profiles.
Note that the pipeline will create the following files in your working directory:
Input: Sample sheet configurations
You will need to create a samplesheet with information about the samples you would like to analyse before running the pipeline. Use the parameter --input
to specify its location. It has to be a comma-separated file with at least 3 columns, and a header row as shown in the examples below.
It is recommended to use the absolute path of the files, but a relative path should also work.
If necessary, a tumor sample can be associated to a normal sample as a pair, if specified with the same patient
ID, a different sample
, and the respective status
.
An additional tumor sample (such as a relapse for example), can be added if specified with the same patient
ID, a different sample
, and the status
value 1
.
Sarek will output results in a different directory for each sample. If multiple samples IDs are specified in the CSV file, Sarek will consider all files to be from different samples.
Output from Variant Calling and/or Annotation will be in a specific directory for each sample and tool configuration (or normal/tumor pair if applicable).
Overview: Samplesheet Columns
Column | Description |
---|---|
patient | Custom patient ID; designates the patient/subject; must be unique for each patient, but one patient can have multiple samples (e.g. normal and tumor). Required |
sex | Sex chromosomes of the patient; i.e. XX, XY…, only used for Copy-Number Variation analysis in a tumor/pair Optional, Default: NA |
status | Normal/tumor status of sample; can be 0 (normal) or 1 (tumor).Optional, Default: 0 |
sample | Custom sample ID for each tumor and normal sample; more than one tumor sample for each subject is possible, i.e. a tumor and a relapse; samples can have multiple lanes for which the same ID must be used to merge them later (see also lane ). Sample IDs must be unique for unique biological samples Required |
lane | Lane ID, used when the sample is multiplexed on several lanes. Must be unique for each lane in the same sample (but does not need to be the original lane name), and must contain at least one character Required for --step mapping |
fastq_1 | Full path to FastQ file for Illumina short reads 1. File has to be gzipped and have the extension .fastq.gz or .fq.gz . |
fastq_2 | Full path to FastQ file for Illumina short reads 2. File has to be gzipped and have the extension .fastq.gz or .fq.gz . |
bam | Full path to (u)BAM file |
bai | Full path to BAM index file |
cram | Full path to CRAM file |
crai | Full path to CRAM index file |
table | Full path to recalibration table file |
vcf | Full path to vcf file |
An example samplesheet has been provided with the pipeline.
Start with mapping (--step mapping
[default])
This step can be started either from FastQ files or (u)BAMs. The CSV must contain at least the columns patient
, sample
, lane
, and either fastq_1/fastq_2
or bam
.
Examples
Minimal config file:
In this example, the sample is multiplexed over three lanes:
Full samplesheet
In this example, all possible columns are used. There are three lanes for the normal sample, two for the tumor sample, and one for the relapse sample, including the sex
and status
information per patient:
Start with duplicate marking (--step markduplicates
)
Duplicate Marking
For starting from duplicate marking, the CSV file must contain at least the columns patient
, sample
, bam
, bai
or patient
, sample
, cram
, crai
NB: When using GATK4 MarkduplicatesSpark reads should be name-sorted for efficient execution
Example:
The Sarek-generated CSV file is stored under results/csv/mapped.csv
if in a previous run --save_bam_mapped
was set and will automatically be used as an input when specifying the parameter --step markduplicates
. Otherwise this file will need to be manually generated.
Full samplesheet
In this example, all possible columns are used including the sex
and status
information per patient:
Start with preparing the recalibration tables (--step prepare_recalibration
)
For starting directly from preparing the recalibration tables, the CSV file must contain at least the columns patient
, sample
, bam
, bai
or patient
, sample
, cram
, crai
.
Example:
The Sarek-generated CSV file is stored under results/csv/markduplicates_no_table.csv
and will automatically be used as an input when specifying the parameter --step prepare_recalibration
.
Full samplesheet
In this example, all possible columns are used including the sex
and status
information per patient:
Start with base quality score recalibration (--step recalibrate
)
For starting from base quality score recalibration the CSV file must contain at least the columns patient
, sample
, bam
, bai
, table
or patient
, sample
, cram
, crai
, table
containing the paths to non-recalibrated CRAM/BAM files and the associated recalibration table.
Example:
The Sarek-generated CSV file is stored under results/csv/markduplicates.csv
and will automatically be used as an input when specifying the parameter --step recalibrate
.
Full samplesheet
In this example, all possible columns are used including the sex
and status
information per patient:
Start with variant calling (--step variant_calling
)
For starting from the variant calling step, the CSV file must contain at least the columns patient
, sample
, bam
, bai
or patient
, sample
, cram
, crai
.
Example:
The Sarek-generated CSV file is stored under results/csv/recalibrated.csv
and will automatically be used as an input when specifying the parameter --step variant_calling
.
Full samplesheet
In this example, all possible columns are used including the sex
and status
information per patient:
Start with annotation (--step annotate
)
For starting from the annotation step, the CSV file must contain at least the columns patient
, sample
, vcf
.
As Sarek will use bgzip and tabix to compress and index the annotated VCF files, it expects the input VCF files to be sorted and compressed.
Example:
The Sarek-generated CSV file is stored under results/csv/variantcalled.csv
and will automatically be used as an input when specifying the parameter --step annotation
.
Full samplesheet
In this example, all possible columns are used including the variantcaller
information per sample:
Updating the pipeline
When you run the above command, Nextflow automatically pulls the pipeline code from GitHub and stores it as a cached version. When running the pipeline after this, it will always use the cached version if available - even if the pipeline has been updated since. To make sure that you’re running the latest version of the pipeline, make sure that you regularly update the cached version of the pipeline:
Reproducibility
It is a good idea to specify a pipeline version when running the pipeline on your data. This ensures that a specific version of the pipeline code and software are used when you run your pipeline. If you keep using the same tag, you’ll be running the same version of the pipeline, even if there have been changes to the code since.
First, go to the nf-core/sarek releases page and find the latest version number - numeric only (eg. 3.0.1
).
Then specify this when running the pipeline with -r
(one hyphen) - eg. -r 3.0.1
.
This version number will be logged in reports when you run the pipeline, so that you’ll know what you used when you look back in the future.
Core Nextflow arguments
NB: These options are part of Nextflow and use a single hyphen (pipeline parameters use a double-hyphen).
-profile
Use this parameter to choose a configuration profile. Profiles can give configuration presets for different compute environments.
Several generic profiles are bundled with the pipeline which instruct the pipeline to use software packaged using different methods (Docker, Singularity, Podman, Shifter, Charliecloud, Conda) - see below. When using Biocontainers, most of these software packaging methods pull Docker containers from quay.io e.g FastQC except for Singularity which directly downloads Singularity images via https hosted by the Galaxy project and Conda which downloads and installs software locally from Bioconda.
We highly recommend the use of
Docker
orSingularity
containers for full pipeline reproducibility, however when this is not possible,Conda
is also supported.
The pipeline also dynamically loads configurations from github.com/nf-core/configs when it runs, making multiple config profiles for various institutional clusters available at run time. For more information and to see if your system is available in these configs please see the nf-core/configs documentation.
Note that multiple profiles can be loaded, for example: -profile test,docker
- the order of arguments is important!
They are loaded in sequence, so later profiles can overwrite earlier profiles.
If -profile
is not specified, the pipeline will run locally and expect all software to be installed and available on the PATH
.
This is not recommended.
docker
- A generic configuration profile to be used with Docker
singularity
- A generic configuration profile to be used with Singularity
podman
- A generic configuration profile to be used with Podman
shifter
- A generic configuration profile to be used with Shifter
charliecloud
- A generic configuration profile to be used with Charliecloud
conda
- A generic configuration profile to be used with Conda. Please only use Conda as a last resort i.e. when it’s not possible to run the pipeline with Docker, Singularity, Podman, Shifter or Charliecloud.
test
- A profile with a complete configuration for automated testing
- Includes links to test data so needs no other parameters
-resume
Specify this when restarting a pipeline. Nextflow will use cached results from any pipeline steps where the inputs are the same, continuing from where it got to previously. For input to be considered the same, not only the names must be identical but the files’ contents as well. For more info about this parameter, see this blog post.
You can also supply a run name to resume a specific run: -resume [run-name]
. Use the nextflow log
command to show previous run names.
-c
Specify the path to a specific config file (this is a core Nextflow command). See the nf-core website documentation for more information.
Nextflow memory requirements
In some cases, the Nextflow Java virtual machines can start to request a large amount of memory.
We recommend adding the following line to your environment to limit this (typically in ~/.bashrc
or ~./bash_profile
):
Running in the background
Nextflow handles job submissions and supervises the running jobs. The Nextflow process must run until the pipeline is finished.
The Nextflow -bg
flag launches Nextflow in the background, detached from your terminal so that the workflow does not stop if you log out of your session. The logs are saved to a file.
Alternatively, you can use screen
/ tmux
or similar tool to create a detached session which you can log back into at a later time.
Some HPC setups also allow you to run nextflow within a cluster job submitted your job scheduler (from where it submits more jobs).
Custom configuration
Resource requests
Whilst the default requirements set within the pipeline will hopefully work for most people and with most input data, you may find that you want to customise the compute resources that the pipeline requests. Each step in the pipeline has a default set of requirements for number of CPUs, memory and time. For most of the steps in the pipeline, if the job exits with any of the error codes specified here it will automatically be resubmitted with higher requests (2 x original, then 3 x original). If it still fails after the third attempt then the pipeline execution is stopped.
For example, if the nf-core/rnaseq pipeline is failing after multiple re-submissions of the STAR_ALIGN
process due to an exit code of 137
this would indicate that there is an out of memory issue:
To bypass this error you would need to find exactly which resources are set by the STAR_ALIGN
process. The quickest way is to search for process STAR_ALIGN
in the nf-core/rnaseq Github repo.
We have standardised the structure of Nextflow DSL2 pipelines such that all module files will be present in the modules/
directory and so, based on the search results, the file we want is modules/nf-core/software/star/align/main.nf
.
If you click on the link to that file you will notice that there is a label
directive at the top of the module that is set to label process_high
.
The Nextflow label
directive allows us to organise workflow processes in separate groups which can be referenced in a configuration file to select and configure subset of processes having similar computing requirements.
The default values for the process_high
label are set in the pipeline’s base.config
which in this case is defined as 72GB.
Providing you haven’t set any other standard nf-core parameters to cap the maximum resources used by the pipeline then we can try and bypass the STAR_ALIGN
process failure by creating a custom config file that sets at least 72GB of memory, in this case increased to 100GB.
The custom config below can then be provided to the pipeline via the -c
parameter as highlighted in previous sections.
NB: We specify the full process name i.e.
NFCORE_RNASEQ:RNASEQ:ALIGN_STAR:STAR_ALIGN
in the config file because this takes priority over the short name (STAR_ALIGN
) and allows existing configuration using the full process name to be correctly overridden.If you get a warning suggesting that the process selector isn’t recognised check that the process name has been specified correctly.
Updating containers
The Nextflow DSL2 implementation of this pipeline uses one container per process which makes it much easier to maintain and update software dependencies. If for some reason you need to use a different version of a particular tool with the pipeline then you just need to identify the process
name and override the Nextflow container
definition for that process using the withName
declaration. For example, in the nf-core/viralrecon pipeline a tool called Pangolin has been used during the COVID-19 pandemic to assign lineages to SARS-CoV-2 genome sequenced samples. Given that the lineage assignments change quite frequently it doesn’t make sense to re-release the nf-core/viralrecon everytime a new version of Pangolin has been released. However, you can override the default container used by the pipeline by creating a custom config file and passing it as a command-line argument via -c custom.config
.
-
Check the default version used by the pipeline in the module file for Pangolin
-
Find the latest version of the Biocontainer available on Quay.io
-
Create the custom config accordingly:
-
For Docker:
-
For Singularity:
-
For Conda:
-
NB: If you wish to periodically update individual tool-specific results (e.g. Pangolin) generated by the pipeline then you must ensure to keep the
work/
directory otherwise the-resume
ability of the pipeline will be compromised and it will restart from scratch.
nf-core/configs
In most cases, you will only need to create a custom config as a one-off but if you and others within your organisation are likely to be running nf-core pipelines regularly and need to use the same settings regularly it may be a good idea to request that your custom config file is uploaded to the nf-core/configs
git repository. Before you do this please can you test that the config file works with your pipeline of choice using the -c
parameter. You can then create a pull request to the nf-core/configs
repository with the addition of your config file, associated documentation file (see examples in nf-core/configs/docs
), and amending nfcore_custom.config
to include your custom profile.
See the main Nextflow documentation for more information about creating your own configuration files.
If you have any questions or issues please send us a message on Slack on the #configs
channel.
Azure Resource Requests
To be used with the azurebatch
profile by specifying the -profile azurebatch
.
We recomend providing a compute params.vm_type
of Standard_E64_v3
VMs by default but these options can be changed if required.
Note that the choice of VM size depends on your quota and the overall workload during the analysis. For a thorough list, please refer the Azure Sizes for virtual machines in Azure.
Troubleshooting & FAQ
How to test the pipeline
When using default parameters only, sarek runs preprocessing and Strelka2
. This is reflected in the default test profile:
Expected run output:
The pipeline comes with a number of possible paths and tools that can be used.
Due to the small test data size, unfortunately not everything can be tested from top-to-bottom, but often is done by utilizing the pipeline’s --step
parameter. Annotation has to tested separatly from the remaining workflow, since we use references for C.elegans
, while the remaining tests are run on downsampled human data.
If you are interested in any of the other tests that are run on every code change or would like to run them yourself, you can take a look at tests/<filename>.yml
. For each entry the respective nextflow command run and the expected output is specified.
Some of the currently, available test profiles:
Test profile | Run command |
---|---|
annotation | nextflow run main.nf -profile test,annotation,docker --tools snpeff,vep,merge |
no_intervals | nextflow run main.nf -profile test,no_intervals,docker |
targeted | nextflow run main.nf -profile test,targeted,docker |
tools_germline | nextflow run main.nf -profile test,tools_germline,docker --tools strelka |
tools_tumoronly | nextflow run main.nf -profile test,tools_tumoronly,docker --tools strelka |
tools_somatic | nextflow run main.nf -profile test,tools_somatic,docker --tools strelka |
trimming | nextflow run main.nf -profile test,trim_fastq,docker |
umi | nextflow run main.nf -profile test,umi,docker |
use_gatk_spark | nextflow run main.nf -profile test,use_gatk_spark,docker |
How can the different steps be used
Sarek can be started at different points in the analysis by setting the parameter --step
. Once started at a certain point, the pipeline runs through all the following steps without additional intervention. For example when starting from --step mapping
(set by default) and --tools strelka,vep
, the input reads will be aligned, duplicate marked, recalibrated, variant called with Strelka, and finally VEP will annotate the called variants.
Which variant calling tool is implemented for which data type?
This list is by no means exhaustive and it will depend on the specific analysis you would like to run. This is a suggestion based on the individual docs of the tools specifically for human genomes and a garden-variety sequencing run as well as what has been added to the pipeline.
Tool | WGS | WES | Panel | Normal | Tumor | Somatic |
---|---|---|---|---|---|---|
DeepVariant | x | x | x | x | - | - |
FreeBayes | x | x | x | x | x | x |
GATK HaplotypeCaller | x | x | x | x | - | - |
GATK Mutect2 | x | x | x | - | x | x |
mpileup | x | x | x | x | x | - |
Strelka2 | x | x | x | x | x | x |
Manta | x | x | x | x | x | x |
TIDDIT | x | x | x | x | x | x |
ASCAT | x | x | - | - | - | x |
CNVKit | x | x | - | x | x | x |
Control-FREEC | x | x | x | - | x | x |
MSIsensorPro | x | x | x | - | - | x |
How to run ASCAT with whole-exome sequencing data?
While the ASCAT implementation in sarek is capable of running with whole-exome sequencing data, the needed references are currently not provided with the igenomes.config. According to the developers of ASCAT, loci and allele files (one file per chromosome) can be downloaded directly from the Battenberg repository.
The GC correction file needs to be derived, so one has to concatenate all chromosomes into a single file and modify the header so it fits this example.
The RT correction file is missing for hg38 but can be derived using ASCAT scripts for hg19. For hg38, one needs to lift-over hg38 to hg19, run the script on hg19 positions and set coordinates back to hg38.
Please note that:
Row names (for GC and RT correction files) should be ${chr}_${position}
(there is no SNP/probe ID for HTS data).
ASCAT developers strongly recommend using a BED file for WES/TS data. This prevents considering SNPs covered by off-targeted reads that would add noise to log/BAF tracks.
What are the bwa/bwa-mem2 parameters?
For mapping, sarek follows the parameter suggestions provided in this paper:
-K 100000000
: for deterministic pipeline results, for more info see here
-Y
: force soft-clipping rather than default hard-clipping of supplementary alignments
In addition, currently the mismatch penalty for reads with tumor status in the sample sheet are mapped with a mismatch penalty of -B 3
.
How to create a panel-of-normals for Mutect2
For a detailed tutorial on how to create a panel-of-normals, see here.
Spark related issues
If you have problems running processes that make use of Spark such as MarkDuplicates
.
You are probably experiencing issues with the limit of open files in your system.
You can check your current limit by typing the following:
The default limit size is usually 1024 which is quite low to run Spark jobs. In order to increase the size limit permanently you can:
Edit the file /etc/security/limits.conf
and add the lines:
Edit the file /etc/sysctl.conf
and add the line:
Edit the file /etc/sysconfig/docker
and add the new limits to OPTIONS like this:
Re-start your session.
Note that the way to increase the open file limit in your system may be slightly different or require additional steps.
Cannot delete work folder when using docker + Spark
Currently, when running spark-based tools in combination with docker, it is required to set docker.userEmulation = false
. This can unfortunately causes permission issues when work/
is being written with root permissions. In case this happens, you might need to configure docker to run without userEmulation
(see here).
How to handle UMIs
Sarek can process UMI-reads, using fgbio tools.
In order to use reads containing UMI tags as your initial input, you need to include --umi_read_structure [structure]
in your parameters.
This will enable pre-processing of the reads and UMI consensus reads calling, which will then be used to continue the workflow from the mapping steps. For post-UMI processing depending on the experimental setup, duplicate marking and base quality recalibration can be skipped with [--skip_tools
].
UMI Read Structure
This parameter is a string, which follows a convention to describe the structure of the umi.
As an example: if your reads contain a UMI only on the forward read, the string can only represent one structure (i.e. “2M11S+T”); should your reads contain a UMI on both reas, the string will contain two structures separated by a blank space (i.e. “2M11S+T 2M11S+T”); should your reads contain a UMI only on the reverse read, your structure must represent the template only for the forward read and template plus UMI for the reverse read (i.e. +T 12M11S+T). Please do refer to FGBIO documentation for more details, as providing the correct structure is essential and specific to the UMI kit used.
Limitations and future updates
Recent updates to Samtools have been introduced, which can speed-up performance of fgbio tools used in this workflow. The current workflow does not handle duplex UMIs (i.e. where opposite strands of a duplex molecule have been tagged with a different UMI), and best practices have been proposed to process this type of data. Both changes will be implemented in a future release.
How to run sarek when no(t all) reference files are in igenomes
For common genomes, such as GRCh38 and GRCh37, the pipeline is shipped with (almost) all necessary reference files. However, sometimes it is necessary to use custom references for some or all files:
No igenomes reference files are used
If none of your required genome files are in igenomes, --igenomes_ignore
must be set to ignore any igenomes input and --genome null
. The fasta
file is the only required input file and must be provided to run the pipeline. All other possible reference file can be provided in addition. For details, see the paramter documentation.
Minimal example for custom genomes:
Overwrite specific reference files
If you don’t want to use some of the provided reference genomes, they can be overwritten by either providing a new file or setting the respective file parameter to false
, if it should be ignored:
Example for using a custom known indels file:
Example for not using known indels, but all other provided reference file:
Where do the used reference genomes originate from
For GATK.GRCh38 the links for each reference file and the corresponding processes that use them is listed below. For GATK.GRCh37 the files originate from the same sources:
File | Tools | Origin | Docs |
---|---|---|---|
ascat_alleles | ASCAT | https://www.dropbox.com/s/uouszfktzgoqfy7/G1000_alleles_hg38.zip | https://github.com/VanLoo-lab/ascat/tree/master/ReferenceFiles/WGS |
ascat_loci | ASCAT | https://www.dropbox.com/s/80cq0qgao8l1inj/G1000_loci_hg38.zip | https://github.com/VanLoo-lab/ascat/tree/master/ReferenceFiles/WGS |
ascat_loci_gc | ASCAT | https://www.dropbox.com/s/80cq0qgao8l1inj/G1000_loci_hg38.zip | https://github.com/VanLoo-lab/ascat/tree/master/ReferenceFiles/WGS |
ascat_loci_rt | ASCAT | https://www.dropbox.com/s/xlp99uneqh6nh6p/RT_G1000_hg38.zip | https://github.com/VanLoo-lab/ascat/tree/master/ReferenceFiles/WGS |
bwa | bwa-mem | bwa index -p bwa/fasta | |
bwamem2 | bwa-mem2 | bwa-mem2 index -p bwamem2/fasta | |
dragmap | DragMap | dragen-os —build-hash-table true —ht-reference $fasta —output-directory dragmap | |
dbsnp | Baserecalibrator, ControlFREEC, GenotypeGVCF, HaplotypeCaller | GATKBundle | https://gatk.broadinstitute.org/hc/en-us/articles/360035890811-Resource-bundle |
dbsnp_tbi | Baserecalibrator, ControlFREEC, GenotypeGVCF, HaplotypeCaller | GATKBundle | |
dict | Baserecalibrator(Spark), CNNScoreVariant, EstimateLibraryComplexity, FilterMutectCalls, FilterVariantTranches, GatherPileupSummaries,GenotypeGVCF, GetPileupSummaries, HaplotypeCaller, MarkDulpicates(Spark), MergeVCFs, Mutect2, Variantrecalibrator | GATKBundle | https://gatk.broadinstitute.org/hc/en-us/articles/360035890811-Resource-bundle |
fasta | ApplyBQSR(Spark), ApplyVQSR, ASCAT, Baserecalibrator(Spark), BWA, BWAMem2, CNNScoreVariant, CNVKit, ControlFREEC, DragMap, DEEPVariant, EnsemblVEP, EstimateLibraryComplexity, FilterMutectCalls, FilterVariantTranches, FreeBayes, GatherPileupSummaries,GenotypeGVCF, GetPileupSummaries, HaplotypeCaller, interval building, Manta, MarkDuplicates(Spark),MergeVCFs,MSISensorPro, Mutect2, Samtools, snpEff, Strelka, Tiddit, Variantrecalibrator | GATKBundle | https://gatk.broadinstitute.org/hc/en-us/articles/360035890811-Resource-bundle |
fasta_fai | ApplyBQSR(Spark), ApplyVQSR, ASCAT, Baserecalibrator(Spark), BWA, BWAMem2, CNNScoreVariant, CNVKit, ControlFREEC, DragMap, DEEPVariant, EnsemblVEP, EstimateLibraryComplexity, FilterMutectCalls, FilterVariantTranches, FreeBayes, GatherPileupSummaries,GenotypeGVCF, GetPileupSummaries, HaplotypeCaller, interval building, Manta, MarkDuplicates(Spark),MergeVCFs,MSISensorPro, Mutect2, Samtools, snpEff, Strelka, Tiddit, Variantrecalibrator | GATKBundle | https://gatk.broadinstitute.org/hc/en-us/articles/360035890811-Resource-bundle |
germline_resource | GetPileupsummaries,Mutect2 | GATKBundle | |
germline_resource_tbi | GetPileupsummaries,Mutect2 | GATKBundle | |
intervals | ApplyBQSR(Spark), ASCAT, Baserecalibrator(Spark), BCFTools, CNNScoreVariants, ControlFREEC, Deepvariant, FilterVariantTranches, FreeBayes, GenotypeGVCF, GetPileupSummaries, HaplotypeCaller, Strelka, mpileup, MSISensorPro, Mutect2, VCFTools | GATKBundle | |
known_indels | BaseRecalibrator(Spark), FilterVariantTranches | GATKBundle | |
known_indels_tbi | BaseRecalibrator(Spark), FilterVariantTranches | GATKBundle | |
known_snps | BaseRecalibrator(Spark), FilterVariantTranches, VariantRecalibrator | GATKBundle | |
known_snps_tbi | BaseRecalibrator(Spark), FilterVariantTranches, VariantRecalibrator | GATKBundle | |
mappability | ControlFREEC | http://xfer.curie.fr/get/vyIi4w8EONl/out100m2_hg38.zip | http://boevalab.inf.ethz.ch/FREEC/tutorial.html |
pon | Mutect2 | GATKBundle | https://gatk.broadinstitute.org/hc/en-us/articles/360035890631-Panel-of-Normals-PON- |
pon_tbi | Mutect2 | GATKBundle | https://gatk.broadinstitute.org/hc/en-us/articles/360035890631-Panel-of-Normals-PON- |
How to customise SnpEff and VEP annotation
Sarek uses nf-core provided containers for both snpEff and VEP for several reference genomes (‘CanFam3’, ‘GRCh37’, ‘GRCh38’, ‘GRCm38’ and ‘WBcel235’).
Using downloaded cache
Both snpEff
and VEP
enable usage of cache, if no pre-build container is available.
The cache needs to be made available on the machine where Sarek is run.
You need to specify the cache directory using --snpeff_cache
and --vep_cache
in the command lines or within configuration files.
Example:
Similarly, when wanting to use a different cache than the one specified in the iGenomes config file, one can use --snpeff_db
, --snpeff_genome
, --snpeff_version
, --vep_cache_version
, --vep_genome
, --vep_species
and --vep_version
to overwrite these default value related to the databases, genomes, versions and caches’ versions used by these tools.
Using VEP plugins
dbnsfp
Enable with --vep_dbnsfp
. The following parameters are mandatory:
--dbnsfp
, to specify the path to the dbNSFP processed file.--dbnsfp_tbi
, to specify the path to the dbNSFP tabix indexed file.
The following parameters are optionnal:
--dbnsfp_consequence
, to filter/limit outputs to a specific effect of the variant.- The set of consequence terms is defined by the Sequence Ontology and an overview of those used in VEP can be found here.
- If one wants to filter using several consequences, then separate those by using ’&’ (i.e.
--dbnsfp_consequence '3_prime_UTR_variant&intron_variant'
.”,
--dbnsfp_fields
, to retrieve individual values from the dbNSFP file.- The values correspond to the name of the columns in the dbNSFP file and are separated by comma.
- The column names might differ between the different dbNSFP versions. Please check the Readme.txt file, which is provided with the dbNSFP file, to obtain the correct column names. The Readme file contains also a short description of the provided values and the version of the tools used to generate them.
For more details, see here.
LOFTEE
Enable with --vep_loftee
.
For more details, see here.
SpliceAi
Enable with --vep_spliceai
. The following parameters are mandatory:
--spliceai_snv
, to specify the path to SpliceAI raw scores snv file.--spliceai_snv_tbi
, to specify the path to SpliceAI raw scores snv tabix indexed file.--spliceai_indel
, to specify the path to SpliceAI raw scores indel file.--spliceai_indel_tbi
, to specify the path to SpliceAI raw scores indel tabix indexed file.
For more details, see here.
SpliceRegions
Enable with --vep_spliceregion
.
For more details, see here and here.”
Requested resources for the tools
Resource requests are difficult to generalize and are often dependent on input data size. Currently, the number of cpus and memory requested by default were adapted from tests on 5 ICGC paired whole-genome sequencing samples with approximately 40X and 80X depth.
For targeted data analysis, this is overshooting by a lot. In this case resources for each process can be limited by either setting --max_memory
and -max_cpus
or tailoring the request by process name as described here. If you are using sarek for a certain data type regulary, and would like to make these requests available to others on your system, an institution-specific, pipeline-specific config file can be added here.
MultiQC related issues
Plots for SnpEff are missing
When plots are missing, it is possible that the fasta and the custom SnpEff database are not matching https://pcingola.github.io/SnpEff/se_faq/#error_chromosome_not_found-details.
The SnpEff completes without throwing an error causing nextflow to complete successfully. An indication for the error are these lines in the .command
files:
How to set up sarek to use sentieon
Sarek 3.0.1 is currently not supporting sentieon. It is planned for the upcoming release 3.1. In the meantime, please revert to the last release 2.7.2.