nf-core/rnaseq
RNA sequencing analysis pipeline using STAR, RSEM, HISAT2 or Salmon with gene/isoform counts and extensive quality control.
3.11.0
). The latest
stable release is
3.16.0
.
Pipeline parameters
Please provide pipeline parameters via the CLI or Nextflow -params-file
option. Custom config files including those provided by the -c
Nextflow option can be used to provide any configuration except for parameters; see docs.
Samplesheet input
You will need to create a samplesheet with information about the samples you would like to analyse before running the pipeline. Use this parameter to specify its location. It has to be a comma-separated file with 4 columns, and a header row as shown in the examples below.
Multiple runs of the same sample
The sample
identifiers have to be the same when you have re-sequenced the same sample more than once e.g. to increase sequencing depth. The pipeline will concatenate the raw reads before performing any downstream analysis. Below is an example for the same sample sequenced across 3 lanes. If you set the strandedness value to auto
the pipeline will sub-sample the input FastQ files to 1 million reads, use Salmon Quant to infer the strandedness automatically and then propagate this information to the remainder of the pipeline. If the strandedness has been inferred or provided incorrectly a warning will be present at the top of the MultiQC report so please be sure to check when looking at the QC for your samples.
Full samplesheet
The pipeline will auto-detect whether a sample is single- or paired-end using the information provided in the samplesheet. The samplesheet can have as many columns as you desire, however, there is a strict requirement for the first 4 columns to match those defined in the table below.
A final samplesheet file consisting of both single- and paired-end data may look something like the one below. This is for 6 samples, where TREATMENT_REP3
has been sequenced twice.
Column | Description |
---|---|
sample | Custom sample name. This entry will be identical for multiple sequencing libraries/runs from the same sample. Spaces in sample names are automatically converted to underscores (_ ). |
fastq_1 | Full path to FastQ file for Illumina short reads 1. File has to be gzipped and have the extension “.fastq.gz” or “.fq.gz”. |
fastq_2 | Full path to FastQ file for Illumina short reads 2. File has to be gzipped and have the extension “.fastq.gz” or “.fq.gz”. |
strandedness | Sample strand-specificity. Must be one of unstranded , forward , reverse or auto . |
An example samplesheet has been provided with the pipeline.
NB: The
group
andreplicate
columns were replaced with a singlesample
column as of v3.1 of the pipeline. Thesample
column is essentially a concatenation of thegroup
andreplicate
columns, however it now also offers more flexibility in instances where replicate information is not required e.g. when sequencing clinical samples. If all values ofsample
have the same number of underscores, fields defined by these underscore-separated names may be used in the PCA plots produced by the pipeline, to regain the ability to represent different groupings.
Adapter trimming options
Trim Galore! is a wrapper tool around Cutadapt and FastQC to peform quality and adapter trimming on FastQ files. Trim Galore! will automatically detect and trim the appropriate adapter sequence. It is the default trimming tool used by this pipeline, however you can use fastp instead by specifying the --trimmer fastp
parameter. fastp is a tool designed to provide fast, all-in-one preprocessing for FastQ files. It has been developed in C++ with multithreading support to achieve higher performance. You can specify additional options for Trim Galore! and fastp via the --extra_trimgalore_args
and --extra_fastp_args
parameters, respectively.
NB: TrimGalore! will only run using multiple cores if you are able to use more than > 5 and > 6 CPUs for single- and paired-end data, respectively. The total cores available to TrimGalore! will also be capped at 4 (7 and 8 CPUs in total for single- and paired-end data, respectively) because there is no longer a run-time benefit. See release notes and discussion whilst adding this logic to the nf-core/atacseq pipeline.
Alignment options
By default, the pipeline uses STAR (i.e. --aligner star_salmon
) to map the raw FastQ reads to the reference genome, project the alignments onto the transcriptome and to perform the downstream BAM-level quantification with Salmon. STAR is fast but requires a lot of memory to run, typically around 38GB for the Human GRCh37 reference genome. Since the RSEM (i.e. --aligner star_rsem
) workflow in the pipeline also uses STAR you should use the HISAT2 aligner (i.e. --aligner hisat2
) if you have memory limitations.
You also have the option to pseudo-align and quantify your data with Salmon by providing the --pseudo_aligner salmon
parameter. Salmon will then be run in addition to the standard alignment workflow defined by --aligner
, mainly because it allows you to obtain QC metrics with respect to the genomic alignments. However, you can provide the --skip_alignment
parameter if you would like to run Salmon in isolation. By default, the pipeline will use the genome fasta and gtf file to generate the transcripts fasta file, and then to build the Salmon index. You can override these parameters using the --transcript_fasta
and --salmon_index
parameters, respectively. The library preparation protocol (library type) used by Salmon quantification is inferred by the pipeline based on the information provided in the samplesheet, however, you can override it using the --salmon_quant_libtype
parameter. You can find the available options in the Salmon documentation.
When running Salmon in mapping-based mode via --pseudo_aligner salmon
the entire genome of the organism is used by default for the decoy-aware transcriptome when creating the indices (see second bulleted option in Salmon documentation).
Two additional parameters --extra_star_align_args
and --extra_salmon_quant_args
were added in v3.10 of the pipeline that allow you to append any custom parameters to the STAR align and Salmon quant commands, respectively. Note, the --seqBias
and --gcBias
are not provided to Salmon quant by default so you can provide these via --extra_salmon_quant_args '--seqBias --gcBias'
if required.
Quantification options
The current options align with STAR and quantify using either Salmon (--aligner star_salmon
) / RSEM (--aligner star_rsem
). You also have the option to pseudo-align and quantify your data with Salmon by providing the --pseudo_aligner salmon
parameter.
Since v3.0 of the pipeline, featureCounts is no longer used to perform gene/transcript quantification, however it is still used to generate QC metrics based on biotype information available within GFF/GTF genome annotation files. This decision was made primarily because of the limitations of featureCounts to appropriately quantify gene expression data. Please see Zhao et al., 2015 and Soneson et al., 2015.
For similar reasons, quantification will not be performed if using --aligner hisat2
due to the lack of an appropriate option to calculate accurate expression estimates from HISAT2 derived genomic alignments - this may change in future releases (see #822). HISAT2 has been made available for those who have a preference for the alignment, QC and other types of downstream analysis compatible with it’s output.
Unique Molecular Identifiers (UMI)
The pipeline supports Unique Molecular Identifiers to increase the accuracy of the quantification. UMIs are short sequences used to uniquely tag each molecule in a sample library and facilitate the accurate identification of read duplicates. They must be added during library preparation and prior to sequencing, therefore require appropriate arrangements with your sequencing provider.
To take UMIs into consideration during a workflow run, specify the --with_umi
parameter. The pipeline currently supports UMIs, which are embedded within a read’s sequence and UMIs, whose sequence is given inside the read’s name. Please consult your kit’s manual and/or contact your sequencing provider regarding the exact specification.
The --umitools_grouping_method
parameter affects how similar, but non-identical UMIs are treated. directional
, the default setting, is most accurate, but computationally very demanding. Consider percentile
or unique
if processing many samples.
Examples:
UMI type | Source | Pipeline parameters |
---|---|---|
In read name | Illumina BCL convert >3.7.5 | --with_umi --skip_umi_extract --umitools_umi_separator ":" |
In sequence | Lexogen QuantSeq® 3’ mRNA-Seq V2 FWD + UMI Second Strand Synthesis Module | --with_umi --umitools_extract_method "regex" --umitools_bc_pattern "^(?P<umi_1>.{6})(?P<discard_1>.{4}).*" |
In sequence | Lexogen CORALL® Total RNA-Seq V1 > mind Appendix H regarding optional trimming | --with_umi --umitools_extract_method "regex" --umitools_bc_pattern "^(?P<umi_1>.{12}).*" Optional: --clip_r2 9 --three_prime_clip_r2 12 |
In sequence | Takara Bio SMARTer® Stranded Total RNA-Seq Kit v3 | --with_umi --umitools_extract_method "regex" --umitools_bc_pattern2 "^(?P<umi_1>.{8})(?P<discard_1>.{6}).*" |
No warranty for the accuracy or completeness of the parameters is implied
3′ digital gene expression assays
Some bulk RNA-seq library preparation protocols capture only a 3’ tag from each transcript, e.g. 3’Pool-seq, DRUG-seq, BRB-seq or Lexogen’s commercial QuantSeq 3’ mRNA-seq FWD protocol. The following parameters have been validated for QuantSeq 3' mRNA-seq FWD
data, and provide useful starting points for other 3’ RNA-seq protocols:
Custom STAR parameters
Lexogen provides an example analysis workflow on their website, which includes the ENCODE standard options for the STAR aligner. In addition, Lexogen also decreases the tolerance for mismatches and clips poly(A) tails. To apply these settings, add the following parameters when running the pipeline:
Custom Salmon arguments
Salmon’s default quantitation algorithm takes into account transcript length. Because 3’ tag protocols do not capture full transcripts, this feature needs to be deactivated by specifying:
QuantSeq analysis with UMIs
If unique molecular identifiers were used to prepare the library, add the following arguments as well, to extract the UMIs and deduplicated alignments:
Reference genome files
Please refer to the nf-core website for general usage docs and guidelines regarding reference genomes.
The minimum reference genome requirements for this pipeline are a FASTA and GTF file, all other files required to run the pipeline can be generated from these files. However, it is more storage and compute friendly if you are able to re-use reference genome files as efficiently as possible. It is recommended to use the --save_reference
parameter if you are using the pipeline to build new indices (e.g. custom genomes that are unavailable on AWS iGenomes) so that you can save them somewhere locally. The index building step can be quite a time-consuming process and it permits their reuse for future runs of the pipeline to save disk space. You can then either provide the appropriate reference genome files on the command-line via the appropriate parameters (e.g. --star_index '/path/to/STAR/index/'
) or via a custom config file.
- If
--genome
is provided then the FASTA and GTF files (and existing indices) will be automatically obtained from AWS-iGenomes unless these have already been downloaded locally in the path specified by--igenomes_base
. - If
--gff
is provided as input then this will be converted to a GTF file, or the latter will be used if both are provided. - If
--gene_bed
is not provided then it will be generated from the GTF file. - If
--additional_fasta
is provided then the features in this file (e.g. ERCC spike-ins) will be automatically concatenated onto both the reference FASTA file as well as the GTF annotation before building the appropriate indices.
When using --aligner star_rsem
, both the STAR and RSEM indices should be present in the path specified by --rsem_index
(see #568).
NB: Compressed reference files are also supported by the pipeline i.e. standard files with the
.gz
extension and indices folders with thetar.gz
extension.
As of v3.7 of the pipeline, if you are using a genome downloaded from AWS iGenomes and using --aligner star_salmon
(default) the version of STAR to use for the alignment will be auto-detected (see #808).
If you are using GENCODE reference genome files please specify the --gencode
parameter because the format of these files is slightly different to ENSEMBL genome files:
- The
--gtf_group_features_type
parameter will automatically be set togene_type
as opposed togene_biotype
, respectively. - If you are running Salmon, the
--gencode
flag will also be passed to the index building step to overcome parsing issues resulting from the transcript IDs in GENCODE fasta files being separated by vertical pipes (|
) instead of spaces (see this issue).
Prokaryotic genome annotations
This pipeline uses featureCounts to generate QC metrics based on biotype information available within GFF/GTF genome annotation files. The format of these annotation files can vary significantly depending on the source of the annotation and the type of organism. The default settings in the pipeline are tailored towards Ensembl GTF annotations available for eukaryotic genomes. Prokaryotic genome annotations tend to be distributed in GFF format which are structured differently in terms of the feature naming conventions. There are a number of ways you can tune the behaviour of the pipeline to cater for differences/absence of biotype information:
- Use
--skip_biotype_qc
to bypass this step altogether in case biotype information is of no interest or isn’t present in your annotation file. - Use
--skip_rseqc
since features like splice junctions, transcription start (TSS) and ending sites (TES) are less prevalent and therefore, less informative in prokaryotes compared to eukaryotes. - Use
--featurecounts_feature_type transcript
instead of--featurecounts_feature_type transcript exon
(default) since entries for the latter may not contain a--featurecounts_group_type gene_biotype
entry in the last column of the annotation. You should make sure that the value defined by--featurecounts_feature_type
ideally contain corresponding entries forfeaturecounts_group_type
. - Use
--featurecounts_feature_type 'CDS' --featurecounts_group_type 'product'
to identify the number of hypothetical proteins. However, the featureCounts QC will no longer reflect the biotype information from your RNA.
Please get in touch with us on the #rnaseq channel in the nf-core Slack workspace if you are having problems or need any advice.
Running the pipeline
The typical command for running the pipeline is as follows:
This will launch the pipeline with the docker
configuration profile. See below for more information about profiles.
Note that the pipeline will create the following files in your working directory:
Updating the pipeline
When you run the above command, Nextflow automatically pulls the pipeline code from GitHub and stores it as a cached version. When running the pipeline after this, it will always use the cached version if available - even if the pipeline has been updated since. To make sure that you’re running the latest version of the pipeline, make sure that you regularly update the cached version of the pipeline:
Reproducibility
It is a good idea to specify a pipeline version when running the pipeline on your data. This ensures that a specific version of the pipeline code and software are used when you run your pipeline. If you keep using the same tag, you’ll be running the same version of the pipeline, even if there have been changes to the code since.
First, go to the nf-core/rnaseq releases page and find the latest pipeline version - numeric only (eg. 1.3.1
). Then specify this when running the pipeline with -r
(one hyphen) - eg. -r 1.3.1
. Of course, you can switch to another version by changing the number after the -r
flag.
This version number will be logged in reports when you run the pipeline, so that you’ll know what you used when you look back in the future. For example, at the bottom of the MultiQC reports.
Core Nextflow arguments
NB: These options are part of Nextflow and use a single hyphen (pipeline parameters use a double-hyphen).
-profile
Use this parameter to choose a configuration profile. Profiles can give configuration presets for different compute environments.
Several generic profiles are bundled with the pipeline which instruct the pipeline to use software packaged using different methods (Docker, Singularity, Podman, Shifter, Charliecloud, Conda) - see below.
We highly recommend the use of Docker or Singularity containers for full pipeline reproducibility, however when this is not possible, Conda is also supported.
The pipeline also dynamically loads configurations from https://github.com/nf-core/configs when it runs, making multiple config profiles for various institutional clusters available at run time. For more information and to see if your system is available in these configs please see the nf-core/configs documentation.
Note that multiple profiles can be loaded, for example: -profile test,docker
- the order of arguments is important!
They are loaded in sequence, so later profiles can overwrite earlier profiles.
If -profile
is not specified, the pipeline will run locally and expect all software to be installed and available on the PATH
. This is not recommended, since it can lead to different results on different machines dependent on the computer enviroment.
test
- A profile with a complete configuration for automated testing
- Includes links to test data so needs no other parameters
docker
- A generic configuration profile to be used with Docker
singularity
- A generic configuration profile to be used with Singularity
podman
- A generic configuration profile to be used with Podman
shifter
- A generic configuration profile to be used with Shifter
charliecloud
- A generic configuration profile to be used with Charliecloud
conda
- A generic configuration profile to be used with Conda. Please only use Conda as a last resort i.e. when it’s not possible to run the pipeline with Docker, Singularity, Podman, Shifter or Charliecloud.
-resume
Specify this when restarting a pipeline. Nextflow will use cached results from any pipeline steps where the inputs are the same, continuing from where it got to previously. For input to be considered the same, not only the names must be identical but the files’ contents as well. For more info about this parameter, see this blog post.
You can also supply a run name to resume a specific run: -resume [run-name]
. Use the nextflow log
command to show previous run names.
-c
Specify the path to a specific config file (this is a core Nextflow command). See the nf-core website documentation for more information.
Custom configuration
Resource requests
Whilst the default requirements set within the pipeline will hopefully work for most people and with most input data, you may find that you want to customise the compute resources that the pipeline requests. Each step in the pipeline has a default set of requirements for number of CPUs, memory and time. For most of the steps in the pipeline, if the job exits with any of the error codes specified here it will automatically be resubmitted with higher requests (2 x original, then 3 x original). If it still fails after the third attempt then the pipeline execution is stopped.
For example, if the nf-core/rnaseq pipeline is failing after multiple re-submissions of the STAR_ALIGN
process due to an exit code of 137
this would indicate that there is an out of memory issue:
For beginners
A first step to bypass this error, you could try to increase the amount of CPUs, memory, and time for the whole pipeline. Therefor you can try to increase the resource for the parameters --max_cpus
, --max_memory
, and --max_time
. Based on the error above, you have to increase the amount of memory. Therefore you can go to the parameter documentation of rnaseq and scroll down to the show hidden parameter
button to get the default value for --max_memory
. In this case 128GB, you than can try to run your pipeline again with --max_memory 200GB -resume
to skip all process, that were already calculated. If you can not increase the resource of the complete pipeline, you can try to adapt the resource for a single process as mentioned below.
Advanced option on process level
To bypass this error you would need to find exactly which resources are set by the STAR_ALIGN
process. The quickest way is to search for process STAR_ALIGN
in the nf-core/rnaseq Github repo.
We have standardised the structure of Nextflow DSL2 pipelines such that all module files will be present in the modules/
directory and so, based on the search results, the file we want is modules/nf-core/star/align/main.nf
.
If you click on the link to that file you will notice that there is a label
directive at the top of the module that is set to label process_high
.
The Nextflow label
directive allows us to organise workflow processes in separate groups which can be referenced in a configuration file to select and configure subset of processes having similar computing requirements.
The default values for the process_high
label are set in the pipeline’s base.config
which in this case is defined as 72GB.
Providing you haven’t set any other standard nf-core parameters to cap the maximum resources used by the pipeline then we can try and bypass the STAR_ALIGN
process failure by creating a custom config file that sets at least 72GB of memory, in this case increased to 100GB.
The custom config below can then be provided to the pipeline via the -c
parameter as highlighted in previous sections.
NB: We specify the full process name i.e.
NFCORE_RNASEQ:RNASEQ:ALIGN_STAR:STAR_ALIGN
in the config file because this takes priority over the short name (STAR_ALIGN
) and allows existing configuration using the full process name to be correctly overridden.If you get a warning suggesting that the process selector isn’t recognised check that the process name has been specified correctly.
Updating containers (advanced users)
The Nextflow DSL2 implementation of this pipeline uses one container per process which makes it much easier to maintain and update software dependencies. If for some reason you need to use a different version of a particular tool with the pipeline then you just need to identify the process
name and override the Nextflow container
definition for that process using the withName
declaration. For example, in the nf-core/viralrecon pipeline a tool called Pangolin has been used during the COVID-19 pandemic to assign lineages to SARS-CoV-2 genome sequenced samples. Given that the lineage assignments change quite frequently it doesn’t make sense to re-release the nf-core/viralrecon everytime a new version of Pangolin has been released. However, you can override the default container used by the pipeline by creating a custom config file and passing it as a command-line argument via -c custom.config
.
-
Check the default version used by the pipeline in the module file for Pangolin
-
Find the latest version of the Biocontainer available on Quay.io
-
Create the custom config accordingly:
-
For Docker:
-
For Singularity:
-
For Conda:
-
NB: If you wish to periodically update individual tool-specific results (e.g. Pangolin) generated by the pipeline then you must ensure to keep the
work/
directory otherwise the-resume
ability of the pipeline will be compromised and it will restart from scratch.
nf-core/configs
In most cases, you will only need to create a custom config as a one-off but if you and others within your organisation are likely to be running nf-core pipelines regularly and need to use the same settings regularly it may be a good idea to request that your custom config file is uploaded to the nf-core/configs
git repository. Before you do this please can you test that the config file works with your pipeline of choice using the -c
parameter. You can then create a pull request to the nf-core/configs
repository with the addition of your config file, associated documentation file (see examples in nf-core/configs/docs
), and amending nfcore_custom.config
to include your custom profile.
See the main Nextflow documentation for more information about creating your own configuration files.
If you have any questions or issues please send us a message on Slack on the #configs
channel.
Azure Resource Requests
To be used with the azurebatch
profile by specifying the -profile azurebatch
.
We recommend providing a compute params.vm_type
of Standard_D16_v3
VMs by default but these options can be changed if required.
Note that the choice of VM size depends on your quota and the overall workload during the analysis. For a thorough list, please refer the Azure Sizes for virtual machines in Azure.
Running in the background
Nextflow handles job submissions and supervises the running jobs. The Nextflow process must run until the pipeline is finished.
The Nextflow -bg
flag launches Nextflow in the background, detached from your terminal so that the workflow does not stop if you log out of your session. The logs are saved to a file.
Alternatively, you can use screen
/ tmux
or similar tool to create a detached session which you can log back into at a later time.
Some HPC setups also allow you to run nextflow within a cluster job submitted your job scheduler (from where it submits more jobs).
Nextflow memory requirements
In some cases, the Nextflow Java virtual machines can start to request a large amount of memory.
We recommend adding the following line to your environment to limit this (typically in ~/.bashrc
or ~./bash_profile
):